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Stochastic rotation dynamics: A Galilean-invariant mesoscopic model for fluid flow
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A recently introduced stochastic model for fluid dynamics with continuous velocities and efficient multipar-
ticle collisions is investigated, and it is shown how full Galilean-invariance can be achieved for arbitrary Mach
numbers. Analytic expressions for the viscosity and diffusion constant are also derived and compared with
simulation results. Long-time tails in the velocity and stress autocorrelation functions are measured.
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Hydrodynamic simulations of complex liquids such
amphiphilic mixtures and polymeric liquids remain a ma
challenge. For these fluids, mesoscopic simulation meth
are often more efficient and stable than conventional com
tational fluid dynamics algorithms; in addition, they ha
shown great promise for simulating flow in complicated g
ometries. For these reasons, there has been a conside
effort to develop lattice gas automata~LGA! @1#, lattice-
Boltzmann~LB! methods@2#, and particle-based mesoscop
simulation techniques such as dissipative particle dynam
~DPD! @3#.

In the LGA method, the fluid is modeled as a collection
particles which move along the links of a regular lattice a
interact according to well-defined collision rules. If the
collision rules preserve mass and momentum conserva
the correct hydrodynamic behavior can be obtained at m
roscopic length scales. In the LB method, the time devel
ment of particle distribution functions with a set of fixe
lattice velocities on a regular lattice is described by a d
cretized LB equation. Both of these lattice methods are v
efficient due to the simplified collision dynamics and stro
reduction of velocity space. However, this reduction is a
their major drawback: they are not Galilean-invariant,
problem which restricts their use to conditions in which t
flow velocity is small compared to the maximum lattice v
locity. In addition, the LB approach is subject to a number
numerical instabilities. While off-lattice methods such
DPD do not suffer from these drawbacks, they are of
complex and difficult to analyze analytically.

Recently, a promising particle-based method for simu
ing fluid flow ~which we will call stochastic rotation dynam
ics! was introduced by Malevanets and Kapral@4#. The fluid
is modeled by particles whose positions and velocities
continuous variables. The system is coarse-grained into
cells of a regular lattice and there is no restriction on
number of particles in a cell. The evolution of the syste
consists of two steps: streaming and collision. In t
streaming step, the coordinate of each particle is increme
by its displacement during the time step. Collisions are m
eled by a stochastic rotation of the relative velocities of ev
particle in each cell. The dynamics is explicitly construct
to conserve mass, momentum, and energy, and the colli
process is the simplest consistent with these conserva
laws. It has been shown that there is anH-theorem for the
dynamics and that this procedure yields the correct hydro
namic equations for an ideal gas@4#. However, many funda-
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mental questions regarding this approach still need to be
swered before it can be applied with confidence. In t
Rapid Communication we address these questions
present the results of a detailed analytic and numerical st
of this model. In particular, the validity of the assumption
molecular chaos made in Ref.@4# is critically analyzed, and
it is shown that the original algorithm is not Galilean
invariant at low temperatures. We then show how the al
rithm needs to be modified in order to guarantee Galile
invariance atarbitrary Mach and Schmidt numbers an
determine the dependence of the transport coefficients on
mean free path and rotation angle. New analytical expr
sions for the transport coefficients at small and large m
free path are also derived and compared with simulati
results.

Consider a set ofN point-particles with~continuous! co-
ordinatesr i(t) and velocitiesvi(t) in two dimensions. In the
streaming step all particles are propagated simultaneous
distancevid, where d is the value of the discretized tim
step. For the collision step, particles are sorted into cells,
they interact only with members of their own cell. The sim
plest cell construction is a square grid with mesh sizea.
However, as will be shown, a shortcoming of imposing th
lattice structure is that it can lead to a breakdown
Galilean-invariance, as well as other anomalies. The ma
scopic velocityu(j,t) is defined as the mean velocity of th
particles in the cell with coordinatej. The local temperature
T, is given by the mean square deviation of the velocit
from the macroscopic velocity,u.

The collision step consists of a random rotation of t
relative velocities,vi2u, of each particle in a cell by an
angle6a. All particles in the same box are subject to th
same rotation, but the rotation angles of different cells
statistically independant. The local momentum and kine
energy is invariant under this operation. The dynamics
summarized by

r i~ t1d!5r i~ t !1d vi~ t !, ~1!

vi~ t1d!5u1v•$vi~ t !2u%, ~2!

wherev denotes a stochastic rotation matrix which rota
by an angle of either1a or 2a with probability 1/2.

A series of simulations were performed on systems w
periodic boundary conditions andL2 cells with L ranging
from 16 to 64. The average number of particles per cell,M,
©2001 The American Physical Society01-1
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was between 5 and 70. The simulations were started wi
random distribution of particles with random initial veloc
ties with components in the interval6vmax. The velocity
distribution quickly relaxes to a Maxwell-Boltzmann distr
bution with an essentially temperature independent re
ation time t}M . t was found to depend strongly on th
value of the rotation anglea, and to diverge approximatel
ast;a22 for a→0; in this limit, there are no collisions an
thermal equilibrium can never be achieved.

In order to determine the kinematic shear viscosity,n, the
temporal correlations of the vorticity,wk5kxũy2kyũx , were
measured, whereũx is the Fourier transform of thex compo-
nent of the macroscopic velocity. According to flu
tuating hydrodynamics, vorticity correlations decay
^wk(t)w2k(0)&;exp@2n(k)k2t#. We found that the value o
n determined in this way is at least a factor of 2 larger th
that given by Eq.~47! of Ref. @4# for a590°. In addition, we
found an anomaly inn(k) if one component of the wave
vector is zero. It can be seen in Fig. 1~solid lines! that the
viscosity at wave vectork52p(1,0)/L is approximately
four times smaller than for 2p(1,1)/L. Imposing a homog-
enous flow parallel to the wave vectork05(kx,0) leads to a
similar drastic change in the value ofn(k0). Another mani-
festation of this breakdown of Galilean-invariance was o
served when measuring the diffusion constantsDx , Dy of
particles in thex and y directions in the presence of a ho
mogenous flow field. It was found thatDx /Dy is not always
equal to 1.

These artifacts led us to a critical review of the ba
assumptions in the analysis in@4#, in particular that ofmo-
lecular chaos. Molecular chaos means that particles involv
in a collision have no memory of earlier encounters wh
colliding. This is clearly not the case if the particles trave
distance between collisions which is small compared to
cell sizea. In this case, essentially the same particles ‘‘c
lide’’ repeatedly before other particles enter the cell or so
of the participating particles leave the cell. Introducing t
mean free path,l5dAT @5#, which is the average distanc
particles stream between rotations, the assumption of
lecular chaos should be valid whenl@a, because most col
lisions then involve particles which have just arrived fro

FIG. 1. Vorticity correlationsW vs time for two different wave
vectorsk at small mean free path,L50.11, with~dashed lines! and
without ~solid lines! the random shift of the grid. The upper sol
and dashed lines are results fork52p(0,1)/L. The lower solid and
dashed lines correspond tok52p(1,1)/L. Parameters: T
50.01275,a590°, M535, andL516.
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different cells. After a collision, particles immediately leav
to other cells, and decorrelate quickly. This behavior is c
firmed by our simulations. For example, the ratio of the d
fusion constantsR5Dx /Dy was measured in a homogeneo
flow field as a function ofL5l/a. While there are signifi-
cant deviations fromR51 for smallL, for L.1/2, R devi-
ates from one by less than 0.3%.

For small L, large numbers of particles in a given ce
remain correlated over several time steps. These correlat
are changed by the presence of flow, and Galilean-invaria
is broken. One way of removing this dependence on the m
roscopic velocity is to perform a random shift of the gr
before performing the stochastic rotation. If the magnitude
the random components of the shift are on the order of
cell size a, the collision environment of each particle n
longer depends on the macroscopic velocity, and it can
shown @6# that there is an exact restoration of Galilea
invariance. This makes it possible to perform simulations
arbitrary Mach number even at low temperature.

In our implementation of this procedure all particles a
shifted by thesamerandom vector with components in th
interval @2a/2,a/2# before the collision step. Particles a
then shifted back by the same amount after the collisi
This shifting procedure, in conjunction with the stochas
collision, leads to an additional contribution to the viscos
which removes the anomalies in itsk dependance. Figure 1
~dashed lines! shows the exponential decay of the vortici
correlations for different wave numbers if the shifting proc
dure is applied. In contrast to the results obtained without
shift, the short time viscosity is now essentially independ
of the wave vectork.

In the streaming step, momentum is transfered direc
from one cell to another when particles cross cell boundar
This leads to a kinetic contribution to the viscosity,nkin ,
calculated previously@4#. However, as mentioned above
there is also a rotational contribution,n rot . The total kine-
matic viscosity therefore consists of the sum of three con
butions, n5nkin1n rot1nmix , where nmix is a cross term
resulting from both streaming and rotation. These additio
contributions are zero in the original method, because
rotations do not transfer momentum between different ce
When the shifting procedure is applied, the rotational con
bution is nonzero; forL!1, n rot is the dominant contribu-
tion to the viscosity.

In this limit, an approximate expression forn;n rot can
be obtained from elementary kinetic theory: ConsiderM
particles in a single cell which is divided into two subcells
a line parallel to thex direction. In each of the subcells
macroscopic velocitiesu1 andu2 can be defined as the ave
age velocity of the subcell particles. In the rotation ste
momentum is transfered between the two subcells. This
mentum transfer can be easily calculated using Eq.~2!. It
depends on the rotation angle and the velocity differe
u12u2. Using the definition of the shear viscosity as t
proportionality constant between the momentum transfer
the velocity gradient and averaging over the position of
dividing line, one finds
1-2
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n rot5
a2

12d
@12cos~a!#. ~3!

Simulation results for the viscosity forL50.028 are in good
agreement with Eq.~3! for rotation angles that are neither to
small nor too large, as shown in Fig. 2~dashed line and •!.
The angular dependence is qualitatively different at la
mean free path, Fig. 2~dotted line and.). The claim in Ref.
@4# that the viscosity has a minimum ata590° is only true
for largeL. For smallerL the minimum is shifted to smalle
angles. Equation~3! cannot correctly describe the total vi
cosity at very small and very large angles because the kin
part of the viscosity becomes large there even ifL is small.

A Green-Kubo relation can also be used to determine
viscosity. For discretized time, the long wavelength limit
the viscosity can be expressed as@7#

n~ t !5
d

NT S ^Pxy
2 ~0!&
2

1(
l 51

n

^Pxy~ l d!Pxy~0!& D , ~4!

wheret5nd and Pxy(t) is the transverse part of the micro
scopic stress tensor at timet. Pxy is defined as the zero wav
vector limit of ] tJxy(kx ,t)/( ikx), whereJxy is the transverse
momentum current@7#. Using Eqs.~1! and~2!, and including
the random shift of the grid, one findsPxy5Pxy

kin1Pxy
rot , with

Pxy
kin~ t !5

1

d (
j 51

N

v j ,y~ t !Dj j ,x , ~5!

Pxy
rot~ t !5

1

d (
j 51

N

Dj j ,x
S Dv j ,y , ~6!

with Dj j ,x5j j ,x(t1d)2j j ,x(t), DSj j ,x5j j ,x(t1d)2j j ,x
S (t

1d), andDv j ,y5v j ,y(t1d)2v j ,y(t). jj (t)5(j j ,x ,j j ,y) de-
notes the coordinates of the cell which contains particlej at
time t. jj

S are the temporary cell coordinates in the new ra
domly shifted reference system. Without the shift procedu
Pxy

rot50, and rotations do not contribute to the viscosity
zero wave vector. In this case the expression forn agrees

FIG. 2. The normalized kinematic viscosity,n, measured at
short times as a function of the rotation anglea. The bullets show
nd/a2 at small mean free path,L50.028. The dashed line is ex
pression~3!. The filled triangles aren/(d T) at large mean free
path,L54. For comparison, the dotted line shows Eq.~7!. L532
andM535.
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with the one derived by more complicated means in@4#. A
series of simulations both with and without the shifting pr
cedure were performed to measurePxy and to calculate the
viscosity using Eq.~4!. We found that the cross term in th
viscosity, nmix , which measures the correlations betwe
Pxy

rot and Pxy
kin is always negative. For large mean free pa

L@1, nmix cancels the rotational contribution to the visco
ity, n rot , and at smallL, it cancels the kinetic part,nkin .
Viscosities measured at short times using the Green-K
expression~4! agree to within 3% with the values determine
from measurements of the vorticity correlations.

At large times there is a renormalization of the viscos
due to long-time tails in stress correlations@8#, and in two
dimensions, the viscosity is predicted to diverge logarithm
cally with time. We were able to directly measure this log
rithmic behavior using Eq.~4! ~see Fig. 3!. We found that
only the kinetic part of the stress tensor contributed to thet
tail in the stress correlation function; no tails could be d
tected in either the rotational or the mixed contributions. T
results are in good agreement with the predictions of mo
coupling theory@8#. The amplitude of the long time tail o
the velocity autocorrelation function was measured and a
found to agree with theory. A more detailed discussion
these results will be presented elsewhere@6#.

Consider now the limit of large mean free path, where
rotational contribution is negligible, i.e.,n'nkin . In this
limit, Dji /d in Eq. ~5! can be approximated by the partic
velocity vi , and the standard expression for the kinetic str
tensor,Pxy5( jv j ,xv j ,y , is recovered. Equation~4! can now
be evaluated analytically by iterating Eq.~2!. If fluctuations
in the number of particles in a cell are ignored, molecu
chaos is assumed, and it is assumed that any two particle
in the same cell at most once, one finds

nkin5
T d

2

3S 1

M21
1

sin2~2a!@11tan2~a/2!/M #

4@12cos~a!/M2cos2~a!~121/M !#2D .

~7!

FIG. 3. Various contributions to the viscosity vs time. The k
netic part,nkin , is represented by the lower solid line, and the to
viscosity,n, by the upper solid line. Both show the same logari
mic behavior. The functiona1b ln(t) is shown for comparison
~dashed lines!. The deviation at timet'200 is due to the recurrenc
of sound waves because of the small 64364 system size. The ro
tational part,n rot , shown by the top dashed line, is essentia
constant at long times.a560°, L50.2, andM55.
1-3



of
at
t i
th
-
f

th
i

g

at

ob-
g

ell
sure
ics
t

ich
lts,

rre-
de-
u-

by
os-
-

er
o-
the

RAPID COMMUNICATIONS

T. IHLE AND D. M. KROLL PHYSICAL REVIEW E 63 020201~R!
The result fora590° agrees with Eq.~47! of @4# up to terms
of order e2M, which arise from fluctuations in the number
particles in a cell. As mentioned above, our simulation d
for L54 do not agree with this result. The reason for tha
that there are temporal correlations extending over more
one time step even at largeL. In particular, the approxima
tion Pxy'( jv j ,xv j ,y used in the calculation o
^Pxy( l d)Pxy(0)& is not accurate for smalll.

Note that the limita590°, andM→`, which appears to
be a good way to achieve high Reynolds numbers, is pa
logical; in this case, kinetic stress correlations oscillate
sign and do not decay to zero.

Finally, the diffusion constantD can be calculated usin
the analogy to a random walk with step sizel. One finds that

D5TdS 1

2
1

b

12bD , ~8!

with b51/M1(121/M )cos(a). Measured values ofD were
found to be in good agreement with Eq.~8! for a not too
large. It follows that the Schmidt-number,Sc5n/D, is
smaller than or on the order of one for large mean free p
hy
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For L!1, however, very large Schmidt-numbers can be
tained sinceSc;L22. Sc can be increased further by goin
to larger rotation angles whereD becomes very small.

In this paper it was shown how a random shift of the c
coordinates during the collision step can be used to en
full Galilean-invariance of the stochastic rotation dynam
model introduced in@4#, even at low temperatures. Differen
analytical expressions for the viscosity were derived wh
were shown to be in good agreement with simulation resu
and the long-time tails of the velocity and stress autoco
lation functions were measured and compared to mo
coupling theory. A simple analytic expression for the diff
sion constant was also derived, and it was shown that
varying the mean free path and the rotation angle it is p
sible to simulate fluids with a wide range of Schmidt num
bers.
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